Pose Control Numerical Robot Solver/Simulator Logic

- 1) Define constants
 - Link lengths
 - Desired end effector trajectory
 - Desired end effector orientation
 - Desired end effector velocity
 - Accuracy tolerance
 - Time step
- 2) Define initial guesses
 - Joint angles
 - End effector pose error
- 3) Enter for loop
 - For each waypoint
- 4) Enter while loop
 - While error exceeds tolerance
- 5) Find current point using FK
 - X, Y, and yaw if 2D
 - X, Y, Z, roll, pitch, yaw if 3D
 - Use DH or product of exponentials
- 6) Find Jacobian
 - 6x6 generally/3D, 2x2 or 3x3 if 2D
 - Use pseudoinverse if not square
- 7) Calculate error
 - Desired actual position (may include orientation)
 - Find norm
- 8) Calculate velocities
 - End effector
 - Joint
- 9) Calculate new joint angles
 - Use initial joint position, current joint velocities, and time step
- 10) Exit while loop
 - When error is within tolerance
- 11) Reset error
 - So next waypoint loop can start
- 12) Find location of each joint
 - From forward kinematics of current joint positions
 - Use DH or product of exponentials
- 13) Plot robot
 - 2D or 3D if applicable
 - Set and label axes
 - Title plot
- 14) Exit for loop
 - When final position reached