
Pose Control Numerical Robot Solver/Simulator Logic

1) Define constants
• Link lengths
• Desired end effector trajectory
• Desired end effector orientation
• Desired end effector velocity
• Accuracy tolerance
• Time step

2) Define initial guesses
• Joint angles
• End effector pose error

3) Enter for loop
• For each waypoint

4) Enter while loop
• While error exceeds tolerance

5) Find current point using FK
• X, Y, and yaw if 2D
• X, Y, Z, roll, pitch, yaw if 3D
• Use DH or product of exponentials

6) Find Jacobian
• 6x6 generally/3D, 2x2 or 3x3 if 2D
• Use pseudoinverse if not square

7) Calculate error
• Desired – actual position (may include orientation)
• Find norm

8) Calculate velocities
• End effector
• Joint

9) Calculate new joint angles
• Use initial joint position, current joint velocities, and time step

10) Exit while loop
• When error is within tolerance

11) Reset error
• So next waypoint loop can start

12) Find location of each joint
• From forward kinematics of current joint positions
• Use DH or product of exponentials

13) Plot robot
• 2D or 3D if applicable
• Set and label axes
• Title plot

14) Exit for loop
• When final position reached

Elissa Ledoux
This is harder. Remember position and orientation have different units, so they scale differently. Usually position accuracy is higher priority, so orientation may have a larger error but will still be guided by the Jacobian.

